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ABSTRACT 

Two-dimensional systems of linear hyperbolic equations are studied with 

regard to their behavior under a solution strategy that in alternate time- 

steps solves exactly the component one-dimensional operators. The initial 

data is a step function across an oblique discontinuity. The manner in which 

this discontinuity breaks up under repeated applications of the split operator 

is analyzed, and it is shown that the split solution will fail to match the 

true solution in any case where the two operators do not share all their 

eigenvectors. The special case of the fluid flow equations is analyzed in 

more detail, and it is shown that arbitrary initial data gives rise to "pseudo 

acoustic waves" and a non-physical stationary wave. The implications of these 

findings for the design of high-resolution computing schemes are discussed. 
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1. INTRODUCTION 

This paper is concerned with two-dimensional systems of time-dependent 

partial differential equations. We write these in their matrix form 

u + Au + Bu -t N X  "y = 0, (1.1) 

and restrict our attention t o  the hyperbolic case, characterized by the fact 

that the nxn matrix (Acos4 + Bsin+) possesses a full set of inde- 

pendent eigenvectors for all angles +. Physically this corresponds to the 
fact that for any direction + it is possible to construct n different 

families of plane wave solutions travelling in that direction. 

A common technique for solving (1.1) numerically is that of operator 

splitting. The operation of advancing (1.1) through a time interval At is 

replaced, in the simplest case, by the following two operations. First the 

1 data is advanced by - At by means of the one-dimensional operator 2 

u + 2Au = 0 ,  
-t NX 

1 
2 and then the new solution is advanced through - At by means of 

u + 2Bu = 0. 
Nt "Y 

Repetition of this pair of operators N times is assumed to be equiva- 

lent to advancing (1.1) by NAt. The attraction of the strategy is that it 

allows use to be made of very accurate and sophisticated one-dimensional nu- 

merical schemes. The drawback is that the splitting itself introduces errors, 
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l/p u 0 0 
0 o u o v  
0 o o u s  

proportional in the above case to 

operators reduce this to (At)*) 

A t  (although different sequences of split 

even into a smooth flow [ 11. 

Crandall and Majda [2] have pointed out additional errors that arise when 

the problem is nonlinear, albeit scalar. Singularities of the solution may be 

shocks, expansions, or contacts, corresponding to converging, diverging, or 

parallel characteristics. The errors occur when a singularity of one type is 

misread as being of another type by either of the one-dimensional operators. 

The error discussed in this paper is also a misreading, arising even at 

the linear level if there is more than one unknown. A and B are then con- 

stant matrices, and the problem is found whenever the eigenvectors of A are 

different from the eigenvectors of B. In that case, we will show the conse- 

quences of operator splitting when the initial discontinuity consists of a 

single oblique discontinuity and each of the one-dimensional split problems is 

solved exactly. The results do not therefore relate to any particular numeri- 

cal scheme, but can be used to explain certain anomalies that are observed in 

practice, and to suggest the kind of scheme that can be employed in given 

problems. A qualitative version of the analysis was given by Colella [3], but 

the present treatment reveals additional detail. 

We will study two specific cases. One of these is the 2x2 system 

l/p 0 v 0 v = 0 .  (1.5) o v o o u  

o o o v s  

+ u 

and the other is the 4x4 system 

P 
U 
V 
S 

+ 
t 
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The first of these i s  an abstract system that serves to introduce the 

methodology; the second is a linear version of the compressible flow (Euler) 

equations, using pressure, velocity and entropy as unknowns. 

In Section 2 and 3 we will briefly recall the time evolution of an 

oblique inital discontinuity in the data (Riemann problem). In Sections 4 and 

5 we calculate how such a discontinuity evolves under the split operators when 

the governing equations are respectively (1.4) and (1 -5). Section 6 contains 

numerical examples, and Section 7 discusses the implications. 

2. TEIE EXACT SOLUTION 

Consider initial data in which states zL, zR occupy semi-inf inite 

regions separated by a straight line inclined at an angle I$ (Fig. l(a)). 

Introducing coordinates XI, ye as shown (1.1) becomes 

u + (Aces$ + BsinI$)zx, + (Asin4 - Bcos@)u = 0. 
-t “Ye 

Solutions not depending on y* having the form 

u = f(x* - Xt)r 
N N 

can be found if X i s  an eigenvalue of (Acos@ + Bsiw), and if r is  

the corresponding eigenvector. By a limiting process we can justify taking 

f to be the Heaviside function. To solve the proposed problem, project the 

given jump onto the eigenvectors 

N 
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In  terms of Heaviside func t ions ,  t h e  d a t a  is  

and the  so lu t ion  at t i m e  t is  ( see  Fig. l b )  

Our objec t  i s  t o  d iscover  how w e l l  t he  s p l i t  opera tors  reproduce t h i s  exac t  

so lu t ion .  

3. THE OPERATOR-SPLIT SOLUTION 

During those  per iods  when the  equat ion being solved i s  (1.2), any jumps 

i n  t h e  so lu t ion  are eigenVeCt0KS of A. I f  t h i s  equat ion is used t o  evolve 

t h e  i n i t i a l  data,  t he  r e s u l t  i s  

i-n 

i= 0 
,u = a + 1 ai(0)H(x’cos$ - 2Ai(0)t)zi(O). 

S i m i l a r l y ,  i f  we use (1.3), w e  ob ta in  

1 1 1 u = u + 1 a (- n)H(x’sin$ - 2Ai(5 n ) t ) r  (- n). -L 1 2  i 2  

i=n  

i-0 

Y 

(3.2) 



i 

1 
2 

1 
2 

-sin - $ 

N r-($) = 

cos - $ 
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1 
2 

1 
2 

cos - $ 

' N  r+(+) = . 
sin - $ 

1 
2 

Now suppose that the initial discontinuity evolves for - A t  according 

to (1 .2 ) .  It will generate n distinct wavefronts (Fig. 2a shows the case n 

= 2 ) .  Each of these generates new data to be evolved for a further - At 
according to (1 .3 ) .  At the end of the second interval we will have n2 waves 

in the system. After time Mt we would have n (2') waves . 

1 
2 

4. TEE ABSTRACT SYSTEM 

Here the problem 

u + A u  + B u  = O  -t -x "Y 
is defined by 

The eigenvalues of Acoe + Bsin4 satisfy 

i.e., 

A 2  = 1. 

Devoting by ( 4 )  the eigenvectors for A = i 1 ,  we obtain 

In  particular, 

and 

( 4 . 4 )  

(4.5) 
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- 1  r ( T I T )  = 
+ 1  -1 147 

1 / 4 7  

r ( F a )  = 

- 
If these eigenvectors are denoted by r 

“X ’ 
identities 

1/47 

1/47 
. 

r = -  a (r + r‘), 
“X 47  “Y “Y I 

(4.7) 
+ + 1  - 

r =-(r + ZX), “Y JT “X 

+ 
“X 

wave will For example, we see that at the end of an x-step, each r 
+ - 

give rise to r and r waves of amplitudes respectively 1/47 and 

-la times that of the source wave. To develop the notation further we in- 

troduce translation operators C and s ,  corresponding to translation of a 

wavefront in the x’-direction by Atcos+ and Atsin+. We use notation 

(=>I to mean “gives rise to” and derive from (4.7) 

”Y “Y 

r + 1  3$ - (Szy + - S -1 zy), - 
4T “X 

- 1  -1 - + 
“Y “Y 

r + - ( s  r + Sr 1, 
4T “X 

- 1  -1 - + 
r + - (C xx - CzX). 
“y 4 7  

(4.6) 

we have the 

i 
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This produces a calculus for tracing the history of a wave through any 

number of split operations. Thus, an r + wave, operated on first in the x- 

and then the y-direction, evolves according to 

X 

+ 
X 
r 3 

1 -1 - + -1 -1 - + + T  [ S ( C  zx + czx) - S (C rx - Crx)l 

-1 -1 - 
2 NX 

- -  - (SC + s-'c);=+ + (sc-' - s c )r a 

Similarly, under the same operations 

- 1 -1 -1 - 
X NX 2 r + (SC - s-~c)~+ + (sc-' + s c >Ex (4.10) 

A powerful notation to describe the configuration of waves present after 

a certain number of steps is to introduce a vector ,a = (al,a2) each of 

whose components is a sum of terms Such a term describes a wave 

at a location XI = asin+ + Bcos+. We use a1 to of amplitude 

waves. Evolution waves and a2 to describe the r describe the zX 
through a pair of split operations from kAt to (k+l)At can then be 

kaBSaCB. 

- ka B 
+ 

NX 

described as 

where the matrix M can be obtained from (4.9), (4.10) as 

jf (SC + s-k) $ (SC - s - k )  
M =  I .  

(4.11) 

(4.12) 1; (Sc-l - s -1 c -1 ) ; (Sc-l + s -1 c -1 1) 
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The equation 

(4.13) 
I 

+ - T  
is then a formal solution to the intial-value problem, if -ao = (a ,a 1 

where a , a are the projections of the initial jump onto the eigenvec- 

tors r . However, computing high powers of M would be cumbersome, and 

it is more convenient to use the recurrence relationship 

+ -  

f 
-A 

This follows from applying to a the identity -k-2 

M2 - tr(M)M + det(M)I = 0 

(4.14) 

which is the form taken for n = 2 by the Cayley-Hamilton theorem. Applying 

(4.14) to (4.12) gives 

(4.15) 

The iteration need not start with an isolated discontinuity, but may take 

arbitrary, a = Ma 

a 
-0 

-1 -0' 

A particularly simple case that yields more general insights is to take 

1 
$J = T ,  so that S = C = T (say) so that 

(4.16) 



I 
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Let 51: be the coefficient of Tk in Then (4.16) translates to 

or, rearranging 

This shows that 

t ion 

k+l - 2& +zn k-l - - -  - 2c k + $+2). -n C 2 (sn-2 -n 

(4.17) 

(4.18) 

ck -n behaves like a leapfrog approximation to the wave equa- 

(4.19) 

The approximation has an effective Courant number of 1/JZ . In (4.19) we 

see waves propagating to left and right with unit velocity as in the exact 

solution, but in (4.18) we will expect the phase error and oscillations that 

typify leapfrog schemes. 

The precise nature of the phase errors can be found by subjecting (4.18) 

to the usual Fourier analysis via the ansatz 

(4.20) k Nn ck = g exp(iex*/At) 

where g is a complex amplification factor, and 0 is the Fourier frequen- 

cy. Substituting (4.20) into (4.18) yields 

g2 - 2gcos(0sin$)cos(0cos+) + 1 = o (4.21) 

or 
2 2 

g = cos(0sin+)cos(0sin+) f i[l - COS (0sin+)cos  COS+)]^/^. (4.22) 
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o v o o  
l/p 0 v 0 

U u o o  

S 0 0 o u  o o o v  
, B -  u =  V , A =  l: 0 u o  

Since lg l  = 1 there is no dissipation. The phase shift per iteration 

(5-2) 

is given by 
2 2 1 /2 tan -1 [l - COS (esin@)cos  COS@)] 

cos(8 sin+)cos(ecos+ ) (4.22) 

which equals 8 whenever 0 = N7~/2. For other values of 4,  (4.22) can 

be expanded in 8 to give a phase velocity of 

(4.23) 

Since the operator-splitting solution has emerged as a nondissipative 

second-order approximation to the exact solution (for plane waves) standard 

results for such schemes apply. In particular, an initial discontinuity will 

be dispersed over an area proportional to t1I3, and the accompanying 

overshoots will reach a maximum amplitude of 27% of the initial amplitude [4]. 

5. THJS LINEARIZED EULER EQUATIONS 

In this section the problem 

u + A u  + B u  = O  “t NX ”Y 
is defined by 

The eigenvalues of (Aces$ + Bsin+) are the roots of 
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r =  
N S  

! 

0 
0 

0 
1 

9 

det 
U - x  p acos4 p asin4 0 
cos$/p u - x 0 0 
sin4 /P 0 u - A  0 

0 0 0 u - x  
= o  (5.3) 

r 
where U = UCOS~ + vsiw, i.e., 

2 2 (U - A )  [(u - x12 - a 1 = 0. (5.4) 

Corresponding to the two eigenvalues A = U 

describing an entropy wave, and 

(5.5) 

are eigenvectors 

(5.6) 

called here a vorticity wave, across which the tangential component of 

velocity changes. 

Corresponding to the eigenvalue = U + a is an eigenvector 

(5.7) 

which describes an acoustic wave. If 0 ranges over [ a , n ]  in (5.71, 

the eigenvalue X = U - a is accounted for as well. 

With no real loss of generality we can assume that the linearization is 

about a state of rest (both the exact and operator-split solutions are invari- 

ant .;=der steady translations), In that  case the entropy and vorticity waves 

are stationary, and the acoustic waves can move with the sound speed a in 

any direction (4). 
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, r -  = 
way 

To f ind  the  e f f e c t  of t h e  s p l i t  ope ra to r s  we need t o  t ake  $ = 0, 1 T ,  

y ie ld ing  

P a  
0 
1 
0 

r =  
“SX 

r =  
“SY 

- 
, r  = 

Nay 

0 0 
0 0 

1 0 

- - 
0 ,:vx 1 

P a  
0 
-1 
0 

, r  = 
“VY 

0 
-1 
0 
0 

+ , r  = -ax 

Pa 
1 
0 
0 

+ 

- 
, r  = -ax 

Pa 
-1 
0 
0 

1 
‘7 

(5.9) 

The fol lowing i d e n t i t i e s  determine how each t i m e  s p l i t  wave w i l l  f i s s i o n  i n t o  

waves t r a v e l l i n g  i n  the  o the r  d i r e c t i o n  

r = r  
“SX “sy 

(5.10) 
+ 1 +  - 

r = - [ r  + r  I - r  -ax 2 Nay Nay “vy 

- 1 +  - 
r = - [ r  + r  I + :  -ax 2 way may Vy 

r = r  
-sy “ S X  

1 -  + 
r = - [ r  - 1 :  I -vy 2 -ax -ax 

(5.11) 

+ 1 -  + zay = z  [ r  + r -ax -ax] + zvx 
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- 1 -  + r =-[r t r  1 - r  . Nay 2 Nax -ax NVX 

c 

From these results we can determine the evolution matrix for this prob- 

lem. Let a be a four-vector whose components describe the configurations 
N 

+ -  of waves r r r and r 
NX’ NX’ NV’ ”S 

where 

(S + s-1 + 2)C 5 

M =  

i. (S + s-1 - 2)C-l 4 

1 -1 - ( s - s  ) 2 

0 

respectively. Then 

(S + s-1 - 2)C 

(S + s-1 + 2)C-l 

T 

t 

1 -1 - ( S - s  ) 2 

0 

some algebra reveals that 

T 1 ( s  - s-5c 

-1 -1 1 -& (S - s )C 

-1 1 
2 - ( S + S  1 

0 

(5.12) 

(5.13) 

and S, C represent displacements through aAtsin$ , aAtcos$ . 
The most obvious feature of (5.13) is that the entropy waves (at this 

linearized level) decouple completely from the rest of the waves, and are in 

fact represented exactly in the operator-split solution. It is easy tp see 

that these statements are always true of any wave that is an eigenvector of 

both A and B (and hence of Acoso + Bsin$). 
-. ine matrix (5.13; has atlother p r c p e r t g  n e t  ebservcd .in the earlier prob- 

lem (4.12). By treating S and C formally as real variables, we can 
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at tempt  t o  find eigenvalues  of M. It is  q u i t e  c l e a r  t h a t  t he re  w i l l  be one 

eigenvalue A = 1 ,  with  e igenvec tor  (0 ,  0, 0, 1lT corresponding t o  a con- 

f i g u r a t i o n  tha t  i s  a s teady  s o l u t i o n  of t h e  system. The cubic  t h a t  g ives  the  

o the r  eigenvalues i s  

The ex is tence  of a second u n i t  e igenvalue A = I i m p l i e s  another  

s teady-s ta te  configurat ion.  The corresponding e igenvec tor  

-1/2 1/2 - s-1/2) -c (S 

1 /2 ) ( s1 /2  + s-1/2) (C'1/2 - c 
a =  

0 

I 

( 5 . 1 5 )  

i t s e l f  exact ly .  (The o t h e r  r o o t s  A 2 ,  A 3  of (5 .14 )  a r e  pseudo-operators, 

having no s i m p l e  i n t e r p r e t a t i o n s ,  although we may remark t h a t  I n  

t h i s  sense ,  they are inverse  t o  each o t h e r  and represent  t r a n s l a t i o n s  i n  

opposing d i r ec t ions .  We w i l l  descr ibe  the  d is turbances  a s soc ia t ed  wi th  them 

a s  "pseudo-acoustic" waves, and we s h a l l  s ee  l a t e r  t h a t  these  waves obey a 

leapf rog- l ike  recurrence r e l a t ionsh ip ) .  

A2A3 = I. 

-1 1 I f  , a s  an example, we take  0 = t a n  - so t h a t  C = S2, t he  pe r s i s -  2 '  

t e n t  conf igura t ion  becomes 

( 5 . 1 6 )  

I 
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I 
and this is sketched in Fig. 3a. All the waves that are radiated externally 

from this configuration will be self cancelling. The profiles of pressure and 

velocity are shown in Fig. 3b. Note that there is never any net change in any 

quantity across the persistent configuration (unless we add an entropy wave). 

For other values of $, the strengths of waves in the persistent config- 

uration remain unaltered, but they are found in different locations. The 

waves A, B, C, D are displaced from the origin by amounts 

1 1 1 1 - dt(cos$ + sin$), 7 aAt(co@ - s i n + ) ,  aAt(sin$ - cos$), - - aAt(cos$ + 
2 2 
sin$), and occupy a region of total breadth aAt( )cos+ I + sinl$I). A s  $ 

approaches Nn/2,  however, the waves approach and cancel by pairs. 

Note that the persistent configuration could be multiplied by any poly- 

nomial in the shift operators, to yield another persistent configuration. 

We turn now to computing the evolution of arbitrary initial data. By the 

Cayley-Hamilton theorem we have 

M4 - (D + l ) M 3  + 2DM2 - (D + l ) M  + I = 0 ( 5 . 1 7 )  

where 

D = T  (C + c-11 + + (S + s -1)  + + (C + c-l)(s + s-1) (5 .18 )  

so that 

is a valid, but tedious recurrence relationship. The trick is to separate a 

into its steady and unsteady parts, thus 

N 
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where CJ lies in 6 ,  the complement of the space spanned by 2 and r . 
The argument is formal, treating S and C as real numbers, but any inter- 

pretable statements reached in that way must be true. 

N S  

Introduce the eigenvector factorization of M 

= P + Q  (5.21) 

;x3, A 4  where A = diag(1, 1, 0 ,  0 )  and A = diag(0, 0 ,  X 3 ,  A 4 )  where 

do not need to be explicitly computed. 
P 4 

We then have that 

QJ = QzS = PCJ = 0 

Inserting (5.21) into (5.17) and using (5.22) gives 

(Q - I)2(Q2 - (D - l)Q + I)CJ = 0 

and since Q - I is a non-singular, the part of the solution lying in 5 

obeys 

(Q2 - (D - l)Q + I)% = 0 (5.23) 

or 

(5.24) 

' 4  
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Thus, the unsteady part of the operator-split Euler solution obeys a re- 

currence relationship very similar to that found for the abstract problem (cf. 

4.15) .  In the special case Q = n / 4 ,  we again find a leapfrog-type behavior 

for the discrete values 

(5 .25)  

This shows that the unsteady part obeys a numerical approximation to 

Fourier analysis reveals a non-dissipative scheme; some - 2 
.9tt - a 5Jx-x-* 
lengthy algebra yields the phase speed in a general direction to be 

which is only slightly in error. The principal disparity between the exact 

and operator split solutions is this. In both cases an arbitrary initial dis- 

continuity should project into a steady component (one that moves with the 

fluid) and an unsteady component. The chief failure of the split operators is 

that they do not correctly distinguish the two sorts of data (except for the 

entropy wave) . 
In the exact solution, that part of the data that projects onto the 

acoustic eigenvectors is treated as unsteady. In the split solution, it is 

not easy to identify the unsteady part of arbitrary data, but it generally 

differs from the exact projection. We give here a partial analysis of the 

decomposition 
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This is facilitated by the observation that M can be symmetrized 

M = E'1 X E 

and 

x =  

(5.27) 

(5.29) 

Since the eigenvectors of X will be orthogonal, a formal solution to the 

problem of determining a ,  in (5.26) is 

T T  r E E a  

N S  r E E z S  
-0 = rT a 

B =  T T  - s  -0 
N S  

(5.30) 

(5.31) 
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and it is only the evaluation of (5.31) that presents any difficulty. Formal 

manipulations yield 

.. .. -1/2 L s1/2+s-1/2 z 

1 1  C1I2+C ) ( 
2 8P - ( 2 

The denominator of this expression can be expanded as 

2n 1 /2+s-1 /2 1 /2+c-1 I2 2n 
2 1 ( s  2 1 -  

n=O 8 
(5.31) 

For (5.31) there is a coefficient of CpSq, say, given by a divergent 

infinite series. However, if (5.31) is multiplied by the numerator of (5.301, 

all coefficients are given by convergent, hence interpretable, series. For 

example, if the initial jump consists of an isolated wave, (so = (1, 0, 

0, 0)) but inclined at Q = 45' we have S = C = T and 

-rX 

The largest coefficients are those of T'l and To. We find 

(5.32) 

(5.33) 

(5.34) 

where (x), = l'(x + n)/r(n) is the Pochammer symbol. Cancellation of terms 
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leads to 

This may be evaluated from the Reflection Formula 

r(z)r(i - Z )  = n/sin(rz) 

as 

- sin(n/4). -1 - ?  co = -c (5.35) 

The numerical value of these coefficients is 0.177 which could be regarded as 

the amplitude of the persistent wave configuration generated by the particular 

initial data. The same amplitude would result from an initial jump propor- 
- 

tional to r and inclined at 4 = 45'. 
N X  

If the initial jump is proportional to r and inclined at 45O, then NVX 

( 5 . 30) yields 
(5.36) 

In this expression the coefficient of To vanishes, but the amplitude may be 

represented by 
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I 

(5.37) 

The generalized hypergeometric function appearing here can by summed by 

Watson’s Theorem [5 ,  p. 541, giving 

which can be evaluated using the Reflection Formula as 

2 C1 = -C = sin n/8 = 0.147. -1 

Results for arbitrary initial jumps can be found by superposing the 

special cases, but systematic conclusions would be hard to reach. The 

important point is that an appreciable fraction of the initial amplitude may 

be projected onto the persistent wave. This conclusion is reinforced by the 

numerical experiments in the following section. 
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6,  NUMERICAL EXAMPLES 

Fig. 4 shows the distribution of pressure and vertical velocity though 

the wave system that results from 10 or 30 split time-steps being applied to 

data representing a shock inclined at $ = r / 4 ,  toe., a = ($ (1 + 1 / 4 7 ) ,  

1 
-0  

(1 - l/n), 1/47, O)T. Note that a persistent wave establishes itself very 

quickly at the center of the domain, where the initial discontinuity was 

placed. A typical "leapfrog" wave moves to the right in a manner that imi- 

tates rather loosely the exact solution (also shown). Some very weak disturb- 

ances move to the left. 

In Fig. 5 the initial data is a shear wave; a = ( 0 ,  147 , -1 /47 , O)T. -0 

Here we see two "pseudo acoustic" waves moving outward, leaving a pronounced 

persistent pressure defect. The region between is filled with low amplitude 

noise, especially in the velocity. 

Fig. 6 demonstrates that the case 4 = r / 4  is not untypical. Here we 

-1 1 

1 T 
take $ = tan (7), computing first the data corresponding to a shock (a = 

(i (1 + 2r), 

(_ao = ( 0 ,  2r, -r, 0 )  1. 

-0 
where r2 = 1/5 and then due to a shear (1  - 2r), r, 0 )  ) 

t 

70 RELEVANCE OF STUDY TO PRACTICAL CWPUTATIONS 

We have seen that for discontinuous data, the solution of the split 

problem converges to the solution of the exact problem only in some weak 

sense, there being 0(1) errors even as At + 0. That many practical 

calculations do successfully employ operator splitting is due to just one 

fact. Two successive wavefronts in the split solution are separated by at 

most For explicit marching schemes this is aAt mini Isin$ I ,  Ices$ I I < at. 
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i n  t u r n  less than the  s p a t i a l  mesh s i zes  Ax, Ay. I n  the frequency domain, 

t he  d i f f e r e n c e  between the s p l i t  so lu t ion  and the  t r u e  s o l u t i o n  l i e s  mostly 

above t h e  fo ld ing  frequency and so cannot be resolved by the  ma jo r i ty  of 

numerical schemes. 

This reasoning does not of course apply t o  i m p l i c i t  schemes, so any 

i m p l i c i t  method would have t o  contain " s u f f i c i e n t "  d i s s i p a t i o n .  Nor does it 

apply t o  the  e x p l i c i t  " large time-step" schemes developed by Harten [61 and 

LeVeque [71. I n  f a c t  t hese  l a t t e r  schemes would be p a r t i c u l a r l y  inappropr i a t e  

a s  they are "high resolut ion" schemes t h a t  aim a t  preserving high frequencies.  

Another scheme t h a t  performs very badly i n  sp l i t -ope ra to r  a p p l i c a t i o n s  is  

t h e  Random Choice Method [31. Again t h i s  i s  because the  one-dimensional 

ope ra to r  i s  j u s t  too good. The states generated i n  solving the  one- 

dimensional Riemann problems are not  l o s t  i n  any averaging process,  but have a 

chance t o  appear i n  the  solut ion.  Although only some of them w i l l  appear,  

t h e r e  is  a s t r i k i n g  s i m i l a r i t y  between t h e  r e s u l t s  of t he  l a s t  s e c t i o n  and t h e  

two-dimensional random choice r e s u l t s  i n  [3]. It i s  t o  be expected t h a t  o t h e r  

a t t empt s  t o  c r e a t e  "very high resolution" schemes, such as Harten's ACM [81 or 

Roe's Ultrabee [91 may experience similar d i f f i c u l t i e s .  

More cons t ruc t ive ly ,  i t  i s  worth not ing t h a t  any scheme based on decompo- 

s i t i o n  of t he  d a t a  i n t o  d i f f e r e n t  waves could use a very-high-resolution 

o p e r a t o r - s p l i t  method on those eigenvectors common t o  both ope ra to r s ,  with a 

s l i g h t l y  less ambitious method employed on the  remaining data.  In  the  context  

of  gas dynamics, we might use moderate r e so lu ton  on the a c o u s t i c  waves. 

Shockwaves would neve r the l e s s  appear sharp,  because they are nonl inear ,  " se l f -  

steepening" phenomena: and expansions would be t r e a t e d  w e l l  where they became 

smooth. The d i f f i c u l t  (because l i n e a r )  entropy waves could be sharpened w i t h -  
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out creating any splitting problems. Even more valuable, perhaps, would be 

the application to chemically reactive or multi-phase flows. These always in- 

troduce new equations (for the species concentrations) that add more linear 

wavefields having the same eigenvector €n all directions [ l o ] .  The ability to 

use very high resolution schemes on these fields will help to reduce numerical 

dissipation . 
The disturbance that seems most difficult to treat is the shear wave. 

Because it is linear it is prone to numerical diffusion, but a very high reso- 

lution splitting scheme would introduce into the solution the sort of noise 

displayed in Figs. 5(a-d) and 6(c,d). It may be necessary to control very 

carefully the degree of resolution applied to these waves, if they are not 

aligned with any coordinate direction. 



-25- 

REFERENCES 

[l] G. Strang, "On the construction and comparison of difference schemes," 

SIAM J. Numer. Anal., Vol. 5, pp. 506-517, 1968. 

[2] M. Crandall and A. Majda, "The method of fractional steps for conserva- 

tion laws," Numer. Math., Vol. 34, pp. 285-314, 1980. 

[3] P. Colella, "Glimm's method for gas dynamics, "SIAM J. Sci. Statist. 

Comput., Vol. 3, pp. 77-110, 1982.. 

[4] R. C. Y. Chin and G. W. Hedstrom, "A dispersion analysis for difference 

schemes: tables of generalized Airy functions," Math. Comp., Vol. 32, 

pp. 1163-1170, 1978. 

[5] L. J. Slater, "Generalized hypergeometric functions," Cambridge, 1966. 

[6] A. Harten, "On a large time-step high-resolution scheme," ICASE Report 

NO. 82-34, 1982. 

[7] R. LeVeque, "A large time-step generalization of Godunov's method for 

systems of conservation laws," SIAM J. Numer. Anal., Vol. 22, pp. 1051- 

1073, 1985. 

i 8 j A. Harten, "Tne artificiai cvmpreesion iiieihod f o i  computation of shocks 

and contact discontinuities: I11 Self-adjusting hybrid schemes," Math. 

Comp., Vol. 32, pp. 363-389, 1978. - 



-26- 

[9] P. L. Roe and M. J. Baines, "Asymptotic behavior of some nonlinear 

schemes for linear advection," in Notes on Numerical Fluid Mechanics, M. 

Pandolfi and R. Piva (ed.), pp. 283-290, Vieweg, 1984. 

[ l o ]  H. C. Yee and J. L. Shinn, "Semi-implicit and fully implicit shock- 

capturing methods for hyperbolic conservation laws with stiff source 

terms , I 1  AIM Paper 87-1 116, July 1987. 



-27- 

. .  

exact solution 

Fig. 1. Breakup of an oblique discontinuity. 
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Fig. 2. Bifurcating wave patterns in the operator-split Solution. 
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Fig. 3. The persistent wave configuration. 
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Fig. 4. Results from a shock a t  4 = n/4. 
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